Math 564: Advance Analysis 1
Lecture 19

Proof of lebeyse-Rallon-Nikolyn the (continued). Spore μ, v ore finite neasares. For a nonnegative B-measurable $f: X \rightarrow(0, \infty)$, recall that v_{f} denotes the measure $v_{f}(B):=\int_{B} f d v \forall B \in B$. It is common to write $d v_{f}:=f d v$ to mean this. B_{j} the observetron bette his proof, it is enough to char the $\mu=\nu_{f}+\mu_{0}$ be sone B-mes, non-neg. f and $y_{0} \perp v$. let
$d \mu \geqslant f d \nu$

$$
F:=\left\{f: X \rightarrow[0, \infty): f \beta \text {-meas. and } \widetilde{\mu}^{\mu} v_{f}\right\} \text {. }
$$

Note that $O \in F$ and F is closed uncles max operation. Incleed, if $f, s \in F$ then letting $X=X_{f} \cup X_{g}$, see $X_{f} \therefore\{x \in X: f(x) \geqslant g(x)\}$ al $x_{g}:=\{x \in X: f(x)<g(x)\}$, then $d \mu \geqslant \mathbb{1}_{x_{f}} \cdot f d v=\mathbb{1}_{x_{f}} \cdot \max (f, g) \cdot d_{0}$ and $d r \geqslant \mathbb{1}_{x_{g}} \cdot g \cdot d \nu=\mathbb{1}_{x_{j}} \cdot \max (f, g) \cdot d \nu$, so $d \mu \geqslant \max (y, f) d \nu$.
Let $\left(f_{n}\right) \subseteq F$ sit. $\left.\quad \lim _{n} \int f_{L} d v=\sup \iint f d v: f \in F\right\} \leqslant \mu^{\prime}(x)$. B_{y} replacing each
f_{n} with max $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ we may assume that $\left(f_{n}\right)$ is increasing $10 \quad A:=\lim _{n} t$ exists and hs the monotone convergence the:

$$
\left.\int f d v=\lim _{v} \int f_{n} d v=\sup \iint f d v: f \in J\right\} \text {. }
$$

Note that $f \in F$ becase $\forall B C B$, we lave

$$
v^{\mu}(B) \geqslant \int_{B} f_{n} d \nu>0 \mu(B) \geqslant \operatorname{lin}_{n} \int_{B} f_{n} d \nu=\int_{B} f l 0 .
$$

We stor ht f is as desired. ut $\mu_{0}:=\mu-\nu_{f}$, so $\mu_{0} \geq 0$ is a measure. Applying the previous lemma to μ_{0} and ν, we get that either $\mu_{0} \perp v$, in which case $\mu=\nu_{f}+\mu_{0}$ is as desiree, or $f A \in B$ with $v(A)>0$ s.t. $\left.d \mu_{0}\right|_{A} \geqslant\left.\varepsilon \cdot d \nu\right|_{A}$. If the latter, then $f+\left\{\mathbb{1}_{A} \in F\right.$, but $\int f+\sum \mathbb{1}_{A} d v=\int f d v+q \cdot v(A)>\int A d v$,
contradicting the naxinality of $\int f d V$.
For σ-finite μ and ν, we can write $X=\bigsqcup_{n} X^{(n)}$ s.t. both Ω all v are finite on each X_{n} let $X=L_{r} Y_{k}$ be for μ all $X=\sum_{e} Z e$ be for V, take $\left.L Y_{n} \cap^{\prime} Z_{l}\right)$. Then foreanh n, we get $X^{(n)}=X_{0}^{(a)} \| X_{1}^{(-1)}$ rel annul a function tu as above for $\left.\mu\right|_{X(n)}$ al $\left.\nu\right|_{X} ^{(n)}$, und $f:=\sum_{n} f_{n} \Omega X_{0}:=\bigsqcup_{n} X_{0}^{|n|}, X_{1}:=\bigcup_{n} X_{1}^{(n)}$ are desired.

Cor. Let μ, ν be σ-finite recurs on a measurable space (X, B). If $\mu \ll \nu$ then for all $g \in L^{\prime}(X, \mu)$ or $g: X \rightarrow[0, \infty] \quad B$-measurable, we have $\quad \int g d \mu=\int g \cdot \frac{d \mu}{d \nu} \cdot d \nu$. $(*)$
Proof. For each $B \in B$, we already know $\int \mathbb{1}_{B} d \mu=\int \mathbb{1}_{B} \cdot \frac{d \mu}{\lambda \nu} d \nu$. Lincurits gives $(*)$ Bor simple functions, and hence for $g \geqslant 0$ by $M C T$ and the tact that g is an increasing limit of simple functions. For L^{\prime} function y, let $y=g^{+}-y^{-}$and apply linearity.
Chain rule. It r, v, λ be σ-finite measures on a measurable space (X, B) Suppose Kt $\mu \ll \nu$ ad $\nu \ll \lambda$. Then $\mu \ll \lambda$ and

$$
\frac{d \mu}{d \lambda}=\frac{d \mu}{d v} \cdot \frac{d v}{d \lambda}
$$

Proof. The transitivity is by definition: $\lambda(B)=0 \Rightarrow \nu(B)=0 \Rightarrow \gamma(B)=0$. For any $B \in B$, we have

$$
\mu(B)=\int \mathbb{1}_{B} \cdot \frac{d \mu}{d \nu} d \nu \stackrel{\downarrow}{=} \int_{B}^{\text {Corollary }} \cdot \frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \lambda} d \lambda=\int_{B} \frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \lambda} d \lambda
$$

So $\frac{d \mu}{d v} \cdot \frac{d v}{d \lambda}=\frac{d \mu}{d \lambda}$ a.e. h_{3} the saigeeven of the $R_{a} d-N_{i}$ b deciuctive. $\square \square$

Coc. let μ, ν be σ-finite weacurs on a mesurable space (X, B). If $\mu \sim \nu$ then $\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}$.
Proot. $\mu \ll \nu \ll \mu$, so $\quad 1=\frac{d \mu}{d \mu}=\frac{d \mu}{d \nu} \cdot \frac{d \nu}{d \mu}$.

Why call a defivative? Let μ be a Borel mecsure on \mathbb{R} that is tinite on bounded intervals. Lt $F(x):=\{f(0, x])$ if $x \geqslant 0$. Sappose flt $F: \mathbb{R} \rightarrow \mathbb{R}$ is continnossly difterestiable $-\mu^{\mu}((x, 0))$ if $x<0$
Then F is Rienaun citesrable and for even $x \in \mathbb{R}$, the lindanedal thever of calualus holds:

$$
F(x)=\int_{0}^{x} F^{\prime}(t) d t
$$

But by the HW problen, Riemana ictegrable facotions are lebergne integarable al the integrats coincide, so

$$
f((0, x])=\int_{[0, x]} F^{\prime} d \lambda,
$$

hich implies that $\mu \ll \lambda$ and $\frac{d \mu}{d \lambda}=F^{\prime}$. The defails we lett as HW. The μ is the "generalized d actiderivative" of $\frac{d \mu}{d \lambda}$.
Furthecmoce, cecall that for as invertible linear transtormation $T_{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, where A is the worespording matix, $\left.\frac{d\left(T_{* \lambda}\right)}{d \lambda} \equiv \operatorname{ldet}(A) \right\rvert\,$. Note thet A is the Jacobian of T_{A}. This genecalizes to smooth $d \lambda$ transtormations $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. Indeed, by the uniznenen of $\frac{d\left(T_{*} \lambda\right)}{d \lambda}$ wnst be equal the the $\mid \operatorname{det}($ Jawhian $) \mid$.

Diffecectiaction of measures on \mathbb{R}^{d}.
Lit μ be a Bore measure on \mathbb{R}^{d} that is finite on even bold box and $\mu \ll \lambda$. Thus $d \mu=\frac{d \mu}{d \lambda} d \lambda$, where $\frac{d \mu}{d \lambda}$ is Bores and integrable on even g bd box. It's conceivable that tor a sal diameter δ, if Br is a box of diam< δ centered at $x \in \mathbb{R}^{d}$ then

$$
\frac{d \mu}{d \lambda}(x) \approx \frac{\mu^{\mu}\left(B_{r}(x) .\right.}{\lambda\left(B_{r}(x)\right)} \quad+x \cdot r
$$

This turns ont to be true:
Lebesgue Difterectiction Theorem. For each locally integrable $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ (ie. $f \cdot \mathbb{1}_{\mathcal{B}} \in L^{\prime}\left(\mathbb{R}^{d}, \lambda\right)$ for every bounded box B), we have:

$$
f(x)=\lim _{r \rightarrow 0} \frac{1}{\lambda\left(B_{r}(x)\right)} \int_{B_{r}(x)} f d \lambda
$$

For ac. $x \in \mathbb{R}^{d}$, where $B_{c}(x)$ is the bell it radius r about x in d_{s}-metric.
In particular, if $\mu \ll \lambda$ and μ is finite on bd d boxes, then

$$
\frac{d j}{d v}(x)=\lim _{r \rightarrow 0} \frac{f\left(B_{r}(k)\right)}{\lambda\left(B_{r}(k)\right)}
$$

This gives a method of computing the Rabon-Nikodym derivative!

